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Chapter 5 treats the thermal properties of phonons.
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Figure 1 Important elementary excitations in solids.
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VIBRATIONS OF CRYSTALS WITH MONATOMIC BASIS
Consider the elastic vibrations of a crystal with one atom in the primitive
cell. We want to find the frequency of an elastic wave in terms of the wavevec-
tor that describes the wave and in terms of the elastic constants.
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The simple model is a good/excellent representation for high symmetry directions,
such as those below for a cubic lattice:




A simplified model:
We assume that the elastic response of the erystal is a linear function of
the forces. That is equivalent to the assumption that the elastic energy is a
quadratic function of the relative displacement of any two points in the crystal.

We assume that the force on the plane s caused by the displacement of the
plane s + p is proportional to the difference u,,, - u, of their displacements.
For brevity we consider only nearest-neighbor interactions, with p = *1. The
total force on s from planes s = 1:

F,=Clu,,y —u,) + Clu,_, —u,) . (1)

This expression is linear in the displacements and is of the form of Hooke’s law.
The constant C is the force constant between nearest-neighbor planes
and will differ for longitudinal and transverse waves. It is convenient hereafter
to regard C as defined for one atom of the plane, so that F, is the force on one
atom in the plane s.
The equation of motion of an atom in the plane s is

d'u,
di*
where M is the mass of an atom.

M

=Clu,y +u, ) — 2u,) ,

We look for solutions with all displacements
having the time dependence exp( —iwt). Then d*u/dt* = —w'u,, and (2) becomes

—szu, = C(us+l + o,y = gﬂl} . {3)

This is a difference equation in the displacements u and has traveling
wave solutions of the form:

ti,+y = u exp(isKa) exp(* iKa) |, (4)

where a is the spacing between planes and K is the wavevector. The value to
use for a will depend on the direction of K.
With (4), we have from (3):

—w*Mu explisKa) = Culexplils + DKa] + expli(s — 1)Ka] - 2 exp(isKa)} .  (5)
We cancel 4 exp(isKa) from both sides, to leave

w*M = —Clexp(iKa) + exp(—iKa) — 2] . (6)
With the identity 2 cos Ka = exp(iKa) + exp(~iKa), we have the dispersion

relation w(K).

w® = (2C/M)(1 = cos Ka) . (7)
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The boundary of the first Brillouin zone lies at K = *m/a. We show from
(7) that the slope of @ versus K is zero at the zone boundary:

dw*/dK = (2Ca/M) sin Ka = 0 (8)

at K= *m/a, for here sin Ka = sin (£7) = 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.
By a trigonometric identity, (7) may be written as

@ = (4C/M) sin® } Ka ; @ = (4C/M)"2|sin 1Ka| . (9)

A plot of @ versus K is given in Fig. 4.
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Figure 4 Plot of w versus K. The region of K <€ 1/a or A » a corresponds to the conti

uum approximation; here  is directly proportional to K.

First Brillouin Zone

What range of K is physically significant for elastic waves? Only those in
the first Brillouin zone. From (4) the ratio of the displacements of two succes-
sive planes is given by

Uy i(s + 1)Ka
e = e:pe[:r;:(fsk;) - eplika) 1o

The range —# to +a for the phase Ka covers all independent values of the
exponential.
The range of independent values of K is specified by

— _” =
T<Ka=mw, or a{K_a .

This range is the first Brillouin zone of the linear lattice, as defined in
Chapter 2. The extreme values are K,,,, = =m/a. Values of K outside of the
first Brillouin zone (Fig. 5} mereTy reproduce lattice motions described by
values within the limits */a -

Figure 5 The wave represented by the solid curve conveys no information not given by the
das] ve, Onlv wavelen han 2g gre needed to represen motion.
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At the boundaries K
u exp(isKa) does not represent a traveling wave, but a standing wave. At the

+a/a of the Brillouin zone the solution u, =

max

zone boundaries sK a4 = *sm, whence
u, =uexp(tism) =u(—-1) . (12)

This is a standing wave: alternate atoms oscillate in opposite phases, because
u, = %1 according to whether s is an even or an odd integer. The wave moves
neither to the right nor to the left.

This situation 1s equivalent to Bragg retlection of x-rays: when the Bragg
condition is satisfied a traveling wave cannot propagate in a lattice, but
through successive reflections back and forth, a standing wave is set up.

The critical value K, = *7/a found here satisfies the Bragg condition
2d sin @ = nA: we have 8 =3m.d =g K=2m/A,n=1, so that A = 2a. With
x-rays it is possible to have n equal to other integers besides unity because the
amplitude of the electromagnetic wave has a meaning in the space between
atoms, but the displacement amplitude of an elastic wave usually has a mean-
ing only at the atoms themselves.

Group Velocity
The transmission velocity of a wave packet is the group velocity, given as
v, = dw/dK |

or

(13)

vy = gradg w(K) ,

the gradient of the frequency with respect to K. This is the velocity of energy
propagation in the medium.,
With the particular dispersion relation (9), the group velocity (Fig. 6) is

0, = {Ca¥M)*® cos L Ka . (14)

This is zero at the edge of the zone where K = #/a. Here the wave is a standing
wave, as in (12), and we expect zero net transmission velocity for a standing wave.

1.0 T
—
(Ca*/M)12
0.5
ng o = Figure 6 Group velocity v, versus K, for model of
2a a  Fig. 4. At the zone boundary K = w/a the group
K velocity is zero
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Long Wavelength Limit
When Ka < 1 we expand cos Ka =1 — }(Ke)®, so that the dispersion rela-
tion {7) becomes

o’ = (C/MKa . {15)

The result that the frequency is directly proportional to the wavevector in the
long wavelength limit is equivalent to the statement that the velocity of sound
is independent of frequency in this limit. Thus v = /K, exactly as in the con-
tinuum theory of elastic waves—in the continuum limit Ko < 1.

Derivation of Force Constants from Experiment

In metals the effective forces may be of quite long range and are carried
from ion to ion through the conduction electron sea, Interactions have been
found between planes of atoms separated by as many as 20 planes. We can make
a statement about the range of the forces from the observed experimental
djspcrsiml relation for . The generalization of the dispersion relation (7) to p
nearest planes is easily found to be

o* = (M) 3, C,(1 — cos pKa) . (16a)
p=0

We solve for the interplanar force constants C, by multiplying both sides
by cos rKa, where r is an integer, and integrating over the range of indepen-
dent values of K:

wla

i
M| dKwjcosrKa=2%C, dK (1 — cos pKa) cos rKa

-l p=0 mia
=—27C, /a (16h)
The integral vanishes except for p = r. Thus
wla
C,= —g—s _dewimspKa (17)

gives the force constant at range pa, for a structure with a monatomic basis.
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Phonon propagating through a square lattice (atom
displacements greatly exaggerated) — source: Wikipedia

TWO ATOMS PER PRIMITIVE BASIS

The phonon dispersion relation shows new features in crystals with two or
more atoms per primitive basis. Consider, for example, the NaCl or diamond
structures, with two atoms in the primitive cell. For each polarization mode in
a given propagation direction the dispersion relation @ versus K develops two
branches, known as the acoustical and optical branches, as in Fig. 7. We have

longitudinal LA and transverse acoustical TA modes, and longitudinal LO and

transverse optical TO modes.

1 1y  Optical phonon branch
[E(M, +M2)]

1
:(www

My > M, i
1 (2C/M)V*

i

I

:

Acoustical !

Figure 7 Optical and acoustical branches of the dis- phonon branch '

persion relation for a_diatomic linear lattice, showing !
the limiting frequencies at K = 0 and K = K, = wla. a K

The lattice constant is a. a
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If there are p atoms in the primitive cell, there are 3p branches to the dis-
persion relation: 3 acoustical branches and 3p — 3 optical branches. Thus ger-
manium (Fig. 8a) and KBr (Fig. 8b), each with two atoms in a primitive cell,
have six branches: one LA, one LO, two TA, and two TO.

5L T T T T
o %y OI.D J
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K/K . in [111] direction K/K,,y, in [111] direction
Figure 8a Phonon dispersion relations in the [111] Figure 8b Dispersion curves in the [111]
direction in germanium at 80 K. The two TA phonon direction in KBr at 90 K, after A. D. B.
branches are horizontal at the zone boundary position, Woods, B. N. Brackhouse, R. A. Cowley,
Ko = (2w/a)3 53). The LO and TO branches coincide at and W. Cochran. The extrapolation to K = 0
K = 0, this also is a consequence of the crystal symmetry of the TO, LO branches are called wy, wy.

of Ge. The results were obtained with neutron inelastic
seattering by G. Nilsson and G. Nelin.

We consider a cubic erystal where atoms of mass M, lie on one set of planes
and atoms of mass M, lie on planes interleaved between those of the first set
(Fig. 9). It is not essential that the masses be different, but either the force con-
stants or the masses will be different if the two atoms of the basis are in non-
equivalent sites. Let @ denote the repeat distance of the lattice in the direction
normal to the lattice planes considered. We treat waves that propagate in a
symmetry direction such that a single plane contains only a single type of ion;
such directions are [111] in the f\(iélcf)ll structure and [100] in the C(Ss(c';l structure.

Uy U1 G | Uit

@-*@I@'

SR

Figure 8 A diatomic erystal structure with masses M,, M, connected by force constant C be-
tween adjacent planes. The displacements of atoms M, are denoted by u,_y, u,, u,4y, ..., and of
atoms M, by v,_,, v,, 0,1 The repeat distance is a in the direction of the wavevector K. The atoms
are shown in their undisplaced positions.
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NaCl or Sodium Chloride CsCl or Cesium Chloride

We write the equations of motion under the assumption that each plane
interacts only with its rl&aresl—nuighhnr ]1lam’:$ and that the force constants are
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to
obtain

2
M,{ g Clo, + v,y — 2u,)} ;

dﬂir% (18)
Mgd—:: = Clugyq, +u, —20,) .

We look for a solution in the form of a rravclj_ng wave, now with different
amplitudes u, v on alternate planes:

u, = u expl{isKa) exp(—iwt) ; vy = v explisKa) exp(—iwt) . (19)

We define a in Fig. 9 as the distance between nearest identical planes, not
nearest-neighbor planes.
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On substitution of {19} in (18) we have

—w*Mu = Cu[l + exp(—iKa)] — 2Cu ;

(20)
—w'™,p = Culexp(iKa) + 1] = 2Cv .

The homogeneous linear equations have a solution only if the determinant of
the coefficients of the unknowns u, v vanishes:

2C — My ~C[1 +explika)]| _ @)
—C[1 + expliKa)] 2C — Myw® ’

or

MMy — 2C(M; + My)w* + 2C*1 — cos Ka) = 0 . (22)

We can solve this equation exactly for @, but it is simpler to examine the
limiting cases Ka < 1 and Kz = *# at the zone boundary. For small Ka we
have cos Ka =1~ K%+ ..., and the two roots are

2. 1 1 . .
w 2(.‘(—M1 + Mn) (optical branch) ; (23)
c
| - 2 2.2 .
W= M_—I T MgK a (acoustical branch) . (24)

The extent of the first Brillovin zone is —m/a < K < m/a, where a is the repeat
distance of the lattice. At K., = *m/a the roots are

@*=2C0M, ; o’=20/M, . (25)

The dependence of  on K is shown in Fig. 7 for M; > M,.
[!C(B%1 "'Mlg_)]li Optical phanon branch

Homework:

1. At the zone boundaries K=+/-n/a, how do the two modes look like? My > My -
L} 1

That is, what are relative values of u and v?
Draw a picture (similar to Fig. 9) for these two modes for transverse modes.
2. Problem #1 of Ch. 4. Acoustical

Due March 15. phonon branch

1 (2C/M,)"?

C1ERS
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The particle displacements in the transverse acoustical (TA) and trans-
verse optical (TO) branches are shown in Fig. 10. For the optical branch at
K = 0 we find, on substitution of (23) in (20),

(26)

Figure 10 Transverse optical and
transverse acoustical waves in a di-
atomic linear lattice, illustrated by the
particle displacements for the two
modes at the same wavelength. Acoustical mode

The atoms vibrate against each other, but their center of mass is fixed. If the
two atoms carry opposite charges, as in Fig. 10, we may excite a motion of this

type with the electric field of a light wave, so that the branch is called the opti-
cal branch.

QUANTIZATON OF ELASTIC WAVES

The energy of a lattice vibration is quantized. The quantum of energy is
called a phonon in analogy with the photon of the electromagnetic wave. The
energy of an elastic mode of angular frequency  is

€= (n+ Dho (27)

when the mode is excited to quantum number n; that is, when the mode is occu-
pied by n phonons. The term 3 fiw is the zero point energy of the mode. It occurs
for both phonons and photons as a consequence of their equivalence to a quan-
tum harmonic oscillator of frequency w, for which the energy eigenvalues are
also (n + 3)hw. The quantum theory of phonons is developed in Appendix C.

Some notes:

« Photon — Einstein’s explanation of photo-emission
« Phonon —itis also really a quantum

¢ The zero point energy is really there

08/03/2012
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We can quantize the mean square phonon amplitude. Consider the stand-
ing wave mode of amplitude

1 =1, cos Kx cos wt .

Here u is the displacement of a volume element from its equilibrium position
at x in the crystal. The energy in the mode, as in any harmonic oscillator, is half
kinetic energy and half potential energy, when averaged over time. The kinetic
energy density is 2 p(du/at)’, where p is the mass density. In a crystal of volume
V, the volume integral of the kinetic energy is ; pVw’u; sin” wt. The time aver-
age kinetic energy is

spVelu =3(n + Hho (28)
because <sin? wt>= ;. The square of the amplitude of the mode is
ug = 4(n + Dh/pVo . (29)

This relates the displacement in a given mode to the phonon occupancy n of

the mode.

What is a momentum?

PHONON MOMENTUM

A phonon of wavevector K will interact

not carry physical momentum,

The reason that phonons on a lattice do not carry momentum is that a
phonon coordinate (except for K = 0) involves relative coordinates of the

atoms. Thus in an H; molecule the internuclear vibrational coordinate r; —r,
is a relative coordinate and does not carry linear momentum; the center of
mass coordinate 3(r, + ry) corresponds to the uniform mode K = 0 and can

carry linear momentum.

ith particles such as photons,
neutrons, and electrons as if it had a momentum %K. However, a phonon does

08/03/2012
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In crystals there exist wavevector selection rules for allowed transitions
between quantum states. We saw in Chapter 2 that the elastic scattering of an
x-ray photon by a crystal is governed by the wavevector selection rule

K=k+G, (30)

where G is a vector in the reciprocal lattice, k is the wavevector of the incident
photon, and k' is the wavevector of the scattered photon. In the reflection
process the crystal as a whole will recoil with momentum —#G, but this uni-
form mode momentum is rarely considered explicitly.

Equation (50) is an example of the rule that the total wavevector of inter-
acting waves is conserved in a periodic lattice, with the possible addition of a
reciprocal lattice vector G. The true momentum of the whole system always is
rigorously conserved. If the scattering of the photon is inelastic, with the
creation of a phonon of wavevector K, then the wavevector selection rule
becomes

kk+K=k+G. (31)
If a phonon K is absorbed in the process, we have instead the relation
K=k+K+G . (32)

Relations (31) and (32) are the natural extensions of (30).

INELASTIC SCATTERING BY PHONONS

Phonon dispersion relations @(K) are most often determined experimen-
tally by the inelastic scattering of neutrons with the emission or absorption of a
phonon. A neutron sees the crystal lattice chiefly by interaction with the nuclei
of the atoms. The kinematics of the seattering of a neutron beam by a crystal

lattice are described by the general wavevector selection rule:

k+G=k' K ,

and b} tht‘ requirement of conservation of energy. lIt,‘!I‘t,’ K is the wavevector of

the phonon created (+) or absorbed (=) in the scattering process, and G is
any reciprocal lattice vector. For a phonon we choose G such that K lies in the

first Brillouin zone.

08/03/2012
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The kinetic energy of the incident neutron is p*/2M,,, where M, is the mass -
of the neutron. The momentum p is given by 7k, where k is the wavevector of
the neutron. Thus %%?/2M, is the kinetic energy of the incident neutron, If k'
is the wavevector of the scattered neutron, the energy of the scattered neutron
is #%k'?/2M,,. The statement of conservation of energy is

ﬁﬁkﬂ ﬁﬂk 2

oM. oM, e . (34)

where fw is the energy of the phonon created (+) or absorbed (=) in the
process.

To determine the dispersion relation using (33) and (34) it is necessary in
the experiment to find the energy gain or loss of the scattered neutrons as a
function of the scattering direction k - k’. Results for germanium and KBr are
given in Fig. 8; results for sodium are given in Fig. 11. A spectrometer used for
phonon studies is shown in Fig, 12.
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Figure 11 The dispersion curves of sodium for phonons propagating in the [001], [110], and

[111] directions at 90 K, as determined by inelastic scattering of neutrons, by Woods, Brockhouse
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Neutron scattering experiments involve big facilities:

=4

NIST Center for Neutron Scattering, Gaithersburg, Maryland, USA

SUMMARY
e The quantum unit of a crystal vibration is a phonon. If the angular fre-
quency is @, the energy of the phonon is fiw.

o When a phonon of wavevector K is created by the inelastic scattering of a
photon or neutron from wavevector k to k', the wavevector selection rule that
governs the process is

k=k'+tK+G,
where G is a reciprocal lattice vector.

» All elastic waves can be described by wavevectors that lie within the first
Brillouin zone in reciprocal space.

« If there are p atoms in the primitive cell, the phonon dispersion relation will
have 3 acoustical phonon branches and 3p — 3 optical phonon branches.
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